Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak (michal.masternak@ucf.edu) for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 21, Number 2, 2016

Study on measuring device arrangement of array-type CdTe detector for BNCT-SPECT

Masanobu Manabe, Soichiro Nakamura, Isao Murata

Summary:

Aim

To design the measuring device arrangement of array-type CdTe detector for BNCT-SPECT.

Background

In a boron neutron capture therapy, a very serious unsolved problem exists, namely that the treatment effect for BNCT cannot be known during irradiation in real time. Therefore, we have been developing a so-called BNCT-SPECT with a CdTe detector, which can obtain a three-dimensional image for the BNCT treatment effect by measuring 478 keV gamma-rays emitted from the excited state of 7Li nucleus created by the 10B(n,α) reaction. However, no practical uses were realized at present, because BNCT-SPECT requires very severe conditions for spatial resolution, measuring time, statistical accuracy and energy resolution.

Materials and methods

The design study was performed with numerical simulations carried out by a 3-dimenaional transport code, MCNP5 considering the detector assembly, irradiation room and even arrangement of arrayed CdTe crystals.

Results

The estimated count rate of 478 keV gamma-rays was sufficiently large being more than the target value of over 1000 counts/h. However, the S/N ratio did not meet the target of S/N > 1. We confirmed that deterioration of the S/N ratio was caused by the influence of Compton scattering especially due to capture gamma-rays of hydrogen. Theoretical calculations were thereafter carried out to find out whether anti-Compton measurement in an array-type CdTe detector could decrease the noise due to Compton scatterings.

Conclusions

The calculation result showed that the anti-coincidence would possibly increase the S/N ratio. In the next phase, an arrayed detector with two CdTe crystals will be produced to test removal possibility of the anti-coincident event.

Signature: Rep Pract Oncol Radiother, 2016; 21(2) : 102-107


« back

 
INDEXED IN:

Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.

http://www.sciencedirect.com/science/journal/15071367/19/2