Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak ( for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 21, Number 3, 2016

Reducing the dosimetric impact of positional errors in field junctions for craniospinal irradiation using VMAT

Andrej Strojnik, Ignasi Méndez, Primož Peterlin



To improve treatment plan robustness with respect to small shifts in patient position during the VMAT treatment by ensuring a linear ramp-like dose profile in treatment field overlap regions.


Craniospinal irradiation (CSI) is considered technically challenging because the target size exceeds the maximal field size, which necessitates using abutted or overlapping treatment fields. Volumetric modulated arc therapy (VMAT) is increasingly being examined for CSI, as it offers both better dose homogeneity and better dose conformance while also offering a possibility to create field junctions which are more robust towards small shifts in patient position during the treatment.

Materials and methods

A VMAT treatment plan with three isocenters was made for a test case patient. Three groups of overlapping arc field pairs were used; one for the cranial and two for the spinal part. In order to assure a ramp-like dose profile in the field overlap region, the upper spinal part was optimised first, with dose prescription explicitly enforcing a ramp-like dose profile. The cranial and lower spinal part were done afterwards, taking into account the dose contribution of the upper spinal fields.


Using simple geometrical reasoning, we demonstrated that hot- and cold spots which arise from small displacement of one treatment field relative to the other treatment field can be reduced by taking two precautions: (a) widening the field overlap region, and (b) reducing the field gradient across the overlap region. The function with the smallest maximal gradient is a linear ramp. We present a treatment planning technique which yields the desired dose profile of the two contributing fields, and minimises dosimetric dependence on minor positional errors in patient set-up.

Signature: Rep Pract Oncol Radiother, 2016; 21(3) : 232-239

« back


Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.