Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak (michal.masternak@ucf.edu) for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 12, Number 1, 2007

Validity of bioeffect dose response models for normal tissue early and late complications of the skin

Sanjay S. Supe, B. S. Rana, Shubha Jyothi, T. Naveen, Jacob Samuel, J. G. R. Solomon

Summary:

Background The bioeffect of a physical dose depends on the nature of the tissue, fractionation scheme, dose rate and treatment time. Certainly, experienced radiotherapists are convinced of the existence of patient-to-patient variability in normal tissue response to radiotherapy for malignant tumours. The absorbed dose needs to be translated into a bioeffect dose, which takes into account treatment variables and the radiobiological characteristics of the relevant tissue. Various bioeffect models such as NSD, CRE, TDF and BED have been proposed to predict the biological effect of radiotherapy treatments.
Aim This study was aimed at deriving tolerance bioeffect dose values for normal tissue complication rate.
Materials/Methods Compiled clinical data of time dose fractionation schedules and incidence of erythema, desquamation and telangiectasia were used for the present analysis.
Results For erythema and desquamation the radiation dose varied from 23.9 to 55.1Gy in 04 to 50 fractions (dose per fraction 1.1 to 7.3Gy) in 11 to 40 days. For telangiectasia (score ≥1 at 3 years) the radiation dose varied from 25.8 to 55.1Gy in 04 to 50 fractions (dose per fraction 1.1 to 7.3Gy) in 11 to 40 days. For telangiectasia (score ≥2 at 5 years) the radiation dose varied from 25.8 to 63.0Gy in 04 to 50 fractions (dose per fraction 1.1 to 7.3Gy) in 11 to 68 days. For telangiectasia (score ≥1, ≥2, ≥3, ≥4 at 10 years) the radiation dose varied from 25.8 to 63.0Gy in 04 to 35 fractions (dose per fraction 1.7 to 7.3Gy) in 22 to 68 days. TDF and LQF values for erythema, desquamation and telangiectasia were evaluated with a/b values of 7.5Gy, 11.2Gy and 2.8Gy respectively. TDF and LQF had a statistically significant correlation with probability of erythema, desquamation and telangiectasia (p<0.001).
Conclusions TDF and LQF values should be limited to 60 and 86Gy in order to limit the probability of telangiectasia.

Signature: Rep Pract Oncol Radiother, 2007; 12(1) : 19-29

FULL TXT (PDF: 0,10MB)

« back

 
INDEXED IN:

Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.

http://www.sciencedirect.com/science/journal/15071367/19/2