Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak (michal.masternak@ucf.edu) for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 19, Number 1, 2014

Monte Carlo characterizations mapping of the (γ,n) and (n,γ) photonuclear reactions in the high energy X-ray radiation therapy

Hosein Ghiasi

Summary:

Aim

The aim of this work was to map the characteristics of (n,γ) and (γ,n) reactions in a high energy photon radiation therapy.

Background

Photoneutrons produced in the high energy X-Ray radiation therapy may damage patients and staff. It is due to high RBE of the produced neutrons according to their energy and isotropic emission. Characterization of the photoneutrons can help us in appropriate shielding.

Materials and methods

This study focused on the photoneutron and capture gamma ray phenomena. Characteristics such as dose value, fluence and spectra of both the neutrons and the by produced prompt gamma ray were described.

Results and discussion

Neutron and prompt gamma spectra in different points showed the neutrons to be thermalized when increasing the distance from the linac. Energy of the neutrons changed from about 0.6 MeV at the isocentre to around 10−08 MeV at the outer door position. Although the neutrons were found as fast neutrons, their spectra showed they were thermal neutrons at the outer door position. Additionally, it was seen that the energy of the gamma rays is higher than the scattered X-ray energy. The energy of gamma rays was seen to be up to 10 MeV while the linac photons had energy lower than 1 MeV. Neutron source strength obtained in this work was in good agreement with the published data, which may be a confirmation of our simulation accuracy.

Conclusion

The study showed that the Monte Carlo simulation can be applied in the radiotherapy and industrial radiation works as a useful and precise estimator. We also concluded that the dose from the prompt gamma ray at the outer door location is higher than the scattered radiation from the linac and should be considered in the shielding.

Signature: Rep Pract Oncol Radiother, 2014; 19(1) : 30-36


« back

 
INDEXED IN:

Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.

http://www.sciencedirect.com/science/journal/15071367/19/2